CONTENTS CONTENTS

Key ideas of Large Language Models

Florian Martel

Abstract: With the release of ChatGPT in 2022 large language models gained broad
public attention. On this report we will discuss and review the underlying architecture of
ChatGPT - the Transformer model. As well, we will review the performance and the key
architecture of GPT3 as a example for a Transformer model.

Contents

1 The Transformer Model 2
1.1 OVerview o o e e e e 2
1.2 Embeddings 3
1.3 Attention e e e e 4

2 Analysis of GPT3 8
2.1 OVErVIEW o o o e, 8
2.2 Few Shot Learning vs. Finetuning 8
2.3 Performance On Benchmarks 10

3 Conclusion 11

1 THE TRANSFORMER MODEL

1 The Transformer Model

The Transformer model, introduced by Vaswani et al. (2017), was able to make major
advancement in the field of natural language processing. Unlike traditional sequence-to-
sequence models that use recurrence or convolution, the Transformer is based solely on
attention mechanisms.

The key advancement of the Transformer lies in its self-attention-mechanism, allowing
it to adjust the given embeddings of words in a sentence by the context of the sentence.
Therefore the Transformer is able not just to understand single words, but rather under-
stand words in the context of a sentence.

Due to their high performance across various tasks, such as translation, summarization,
and question answering, Transformers have become the foundation for numerous natural
language processing models, such as BERT, GPT, and T5.

1.1 Overview

raababililios

Fead
Forward
(CAdd & Norm |“"1
Multi-Head
Aftention
Forward 7 ¥ B
N Ardd & Norm
W A
Ladd & Marm Maaked
Muiti-Head Mutti-Head
Attention Attention
LY) L[s
\— J o —,
Positional = - “ositional
I---r-|'||-r]lf‘_L 1 -;’_{:—9 =noeding
Input Output
Embedding Embedding

l .._T..

IS Ctputs
ishifted nghl

Figure 1: The Transformer - model architecture

1.2 Embeddings I THE TRANSFORMER MODEL

Like many other models in natural language processing the Transfomer has a encoder-
decoder structure.

Encoder

The Encoder is made up of a stack of 6 identical layers. Each layer consists of two
sub-layers. The first sub-layer is a multi-head self-attention mechanism. The second sub-
layer is a feed-forward network (multilayer perceptron), which processes each position in
the input separately. Each sub-layer uses a residual connection and layer normalization.
Residual means the input is added to the output. This is a common approach that helps
maintain stability in the learning process as introduced in He et al. (2016). All sub-layers
in the Encoder produce outputs with a dimension dpoqe; = H12.

Decoder

The Decoder also consists of 6 identical layers. Each layer includes the same two sub-
layers as the Encoder: multi-head self-attention and feed-forward network. In addition,
the Decoder incorporates a third sub-layer that performs multi-head attention over the
output of the Encoder stack("encoder-decoder attention"). This enables the model to gen-
erate output sequences based on the learned representations from the input. Similar to
the Encoder, each sub-layer in the Decoder uses residual connections and layer normal-
ization. To ensure that the model only attends to previous positions during generation,
the self-attention sub-layer in the Decoder is modified with masking. This technique pre-
vents positions in the input sequence from attending to previous positions, ensuring that
predictions depend only on previously generated outputs.

1.2 Embeddings

Obviously the Transformer Architecture can’t process with words. Therefore we need to
transform the Inputs into a computable structure. In the case of the Transformer Embed-
dings we use vectors.

In therory it would work to take the whole alphabet of a language, for example english,
and assign a corresponding vector for this word. In the original Transformer in Vaswani
et al. (2017) this vector has the dimension 512. That would mean, that there are 512 pos-
sible "meanings" stored in this vector.

In practice you don’t want to take the whole alphabet of a language, because this would
take a very large embedding storage. For example there are around 600.000 words in the
Oxford English Dictionary. With an embedding dimension of 512 this would result in
N = 600.000 * 512 = 307.200.000 parameters. This is the reason, why state of the art
LLMs use tokenizers like SentencePiece. (Kudo and Richardson (2018))

1.3 Attention I THE TRANSFORMER MODEL

For example, this is how GPT-3 would tokenize a test sentence:

This is a test sentence for my report on LLMs.

Figure 2: Test tokinization with GPT3 tokenizer

The colored boxes display the tokens. You can see that most words are considered as
single tokens, but the word LLMs is made up of two tokens. Each token has a unique id,
which maps to the corresponding vector. This Test sentence for example would therefore
be translated in this array of unique ids:

[1212, 318,257, 1332, 6827, 329, 616, 989, 319, 27140, 10128, 13]

With the usage of tokens the embedding storage rapidly decreases. Using the same to-
kenizer like GPT-2, GPT3 for example has a vocabulary size of 50.257. (Radford et al.
(2019))

The embeding vectors are parameters of the transformer. This means, they are chosen
randomly in the first place and then will be trained through backpropagation.

1.3 Attention

One token can have multiple meanings. For example the german word "Bank" can ref-
erence a bank, a bench or a sandbank. Without an attention mechanism the embedding
vector for "Bank" stays the same, although it should differ due to different meanings de-
pending on the context of the sentence where the token is used. This is what the attention
process provides: It adjusts the given embedding vector by the context of the sentence in
order to contain the real meaning of the token.

An attention function takes three parameters: queries ¢, keys k, and values v. Each token
has its own corresponding query, key, and value. They can be computed by multiplying
the embedding vector e by a corresponding weight matrix W:

g=Wyx*e
k‘:Wk*e
v=W,xe

The weight matrix contains parameters which are learned in the training process. There-
fore it is difficult to understand, what the Transformer model really does. The most com-
mon interpretation is the following: The query of a token can be seen as query to search

1.3 Attention I THE TRANSFORMER MODEL

for context. If a query finds a fitting key (we’ll see that this happens when the vectors
point in the same direction) this means the key-token gives context to the query-token by
adding the value from the key-token to the embedding-vector of the query-token.

Scaled Dot-Product Attention

Besides the Scaled Dot-Product Attention there are several possible way to compute At-
tention, for example the more simple Dot-Product Attention (same procedure, but with-
out scaling) or the Additive Attention introduced in Bahdanau et al. (2016). It turns out,
that Scaled Dot-Product Attention outperforms Additive and Dot-Product Attention.(Britz
et al. (2017)) Scaled Dot-Product Attention is computed in 5 Steps:

Scaled Dot-Product Attention

Mathul

Softhax

Mask (opt.)

fiig

Scale

) —
X, —
<

Figure 3: Scaled Dot Product Attention

1. Dot-product of queries and keys
After computing queries and keys as mentioned above, the first step is to perform a dot-
product of all query- and keyvectors. To do this, all query- and keyvectors are concate-
nated to matrix:

Q=[q1,q2 9]

K = [k, ko, ks, ...

The result is a matrix QK7 containing all dot-products of query- and keyvectors.

1.3 Attention I THE TRANSFORMER MODEL

2. Scaling by ﬁ

This step distinguishes the Scaled from the normal Dot-Product Attention and makes it
more performant. The reason for this is, that with rising embedding dimension d the
softmax function (Step 4) is going to return extremely small gradients due to the rising
variance of the data. This can be explained as follows:

Assume that the components of the vectors q and k are independent random variables.
Each of these random variables has a mean of 0 and a variance of 1. Since each ¢; and k;
is a random variable with mean O and variance 1, the product ¢;k; also has a mean of 0.
The variance of ¢;k; is:

Var(g;k;) = Var(q;) - Var(k;)) =1-1=1

When we sum these products to get the dot product, the variances add up. Therefore, the
variance of the dot product q - k is:

d d d
=1 =1 =1

Thus, the dot product q - k has a mean of 0 and a variance of d.

3. Masking (optional)
During training of Transformer Models, it is necessary to prevent the model from "cheat-
ing" by peeking at future tokens. This is achieved by maskinig the future tokens.

In theory masking involves setting specific positions in the attention matrix to a very large
negative value (typically —co) so that when the Softmax function is applied in the next
step, these positions will have the vale zero. This would ensure that the model does not
consider these masked positions when computing the attention weights. In practice it is
not possible to set values to minus infinity. Therefore the values are set to the smallest
possible value, which causes a small blurring, because the values computed by Softmax
are not exact zero.

4. Softmax
The Softmax function is defined as:

o(zi) = Zn—

”
i=1¢"

It is used to convert the values of the scaled matrix into probabilities. For z we use all
vectors inside the matrix. Softmax normalizes the vector-values so that they lie in the

1.3 Attention I THE TRANSFORMER MODEL

range (0, 1) and sum to 1. This allows the model to weight the importance of different
tokens. The computed values therefore are an indicator of how well the query fits to the
key. They are called attention weights.

5. Matrix-Vector Multiplication with values
After computing the attention weights using the softmax function, the next step is to use
these weights to combine the value vectors.

Let V' = [v1,v9,v3,...] be the matrix of value vectors, where each v; corresponds to the
value vector associated with the key k;. The resulting context matrix C'is then obtained
by multiplying the attention weight matrix A with the value matrix V:

C=AV
This context matrix will then be added to the input embedding matrix in order to change

the meaning of the tokens.

Putting all steps together, we end up with the following equation:

. QKT
Attention(Q, K, V') = softmax Vv
Vdy

This process forms one Attention Head.

Multi Head Attention
In practice it turned out to be beneficial to use multiple attention heads in one model. This

Scaled Dot-Product
Attention

| LA L

L1 L1 L1
[L\near],] [L\near],][Linear],]

Vv K Q

Figure 4: Multi Head Attention

means there are multiple query, key and value matrices allowing the model to attend from
different representation subspaces at different positions. The computed context matrices
of the attention heads are concatenated at the end to a single multi head context matrix.

2 ANALYSIS OF GPT3

2 Analysis of GPT3

In "Language Models are Few Shot learners" by Brown et al. (2020) GPT3 was intro-
duced, a large language model focussing on general understanding rather than beeing
finetuned n a specific task.

2.1 Overview

Before GPT3 there were other approaches for solving NLP tasks. At first, there were
single-layer word vectors (Mikolov et al. (2013)) that fed into specific task architectures.
Then RNNs came across, that added multiple layers and context but still needed specific
architectures for different tasks. (Dai and Le (2015)) The latest trend before GPT3 was
using big pre-trained transformer models, which were fine-tuned directly for different
tasks. (Radford er al. (2018))

This approach has led to progress in challenging tasks like reading comprehension and
question answering. However, there is a problem: these models still need a lot of task-
specific data for fine-tuning. For each new task, you need thousands to hundreds of thou-
sands of labeled examples. That is why GPT3 uses another approach, instead of finetun-
ing: Few-Shot Learning.

In order to perform well on different tasks without finetuning GPT3 has to develop a
broad understanding of different tasks. This is reffered as meta learning and takes a lot of
training data. This training data was used to train GPT3.

Quantity Weight in Epochs elapsed when
Dataset (tokens) training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 29
Books1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Figure 5: Training Data used to train GPT3

Using training data, different versions of GPT3 were trained in order to be able to test,
whether performance depends on model size. We will see, that this correlates.

2.2 Few Shot Learning vs. Finetuning

Finetuning
A model is finetuned by giving it a a supervised dataset of the task it should be finetuned
on. Processing the examples, the weights are updated through backpropagation. That

2.2 Few Shot Learning vs. Finetuning

2 ANALYSIS OF GPT3

Model Name Nparams ~ Mayers Omodel Mheads Ohead
GPT-3 Small 125M 12 768 12 64
GPT-3 Medium 350M 24 1024 16 64
GPT-3 Large 760M 24 1536 16 96
GPT-3 XL 1.3B 24 2048 24 128
GPT-32.7B 2.7B 32 2560 32 80
GPT-36.7B 6.7B 32 4096 32 128
GPT-3 13B 13.0B 40 5140 40 128
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128

Figure 6: Different archtitectures of GPT3

means finetuning a model is changing the parameters of the model. Besides the disad-
vantage of needing a large trining dataset, finetuning also potencially makes the model
perform worse on other tasks. As well there ist the potential to exploit spurious features,
resulting in an unfair advantage to human performance. The main advantage on the other
hand is a strong performance on a specific benchmark. GPT3 is not finetuned for specific

tasks.

Fine-tuning

The model is trained via repeated gradient updates using a

large corpus of example tasks.

sea otter => loutre de mer

peppermint => menthe poivrée

plush giraffe => girafe peluche

cheese =>

example #1

example #2

example #N

prompt

Figure 7: Finetuning process

Few-Shot learning

Few-Shot Learning does not change the weights of a model. Rather it gives a few exam-
ples oft the task at interference to the context oft the model. Few Shot learning turns out

2.3 Performance On Benchmarks 2 ANALYSIS OF GPT3

to be performing worse than state-of-the art finetuned models, but you only need a very
small amount of supervised data and the model can perform well on diffrent tasks.

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Figure 8: Few shot learning

2.3 Performance On Benchmarks

Putting together different results on different benchmarks it turns out that Few-Shot learn-
ing tends to be better than Zero- (no examples given) and One-Shot Learning (Only one
example given). As well the performance on tasks tends to increase with the amount of
parameters of the model.

The task-performance increases with rising amount of examples, but the growth rate turns
out to be decreasing when increasing the rate of examples.

10

3 CONCLUSION

100 Aggregate Performance Across Benchmarks

Few Shot
—— One Shot
80 —e— Zero Shot

60

20

Accuracy

0 —
0.1B 04B 08B 1.3B 26B 6.7B 13B 175B
Parameters in LM (Billions)

Figure 9: Aggregate performance on benchmarks

Zero-shot One-shot Few-shot

175B Params
Natural Language

Accuracy (%)

- —————=—— 1.3BParams

0 10 10'
Number of Examples in Context (K)

Figure 10: Few Shot Learning with rising examples

3 Conclusion

One can say the development of the transformer model is a breakthrough for large lan-
guage models and machine learning in general. The introduction of the self-attention
mechanism and moveing away from recurrence and convolution led to significant im-
provements in various NLP tasks. GPT-3’s ability to perform a wide array of tasks without
finetuning showcases the robustness and adaptability of transformer-based models.

11

REFERENCES REFERENCES

References

Bahdanau, D., Cho, K., and Bengio, Y. (2016). Neural machine translation by jointly
learning to align and translate.

Britz, D., Goldie, A., Luong, M.-T., and Le, Q. (2017). Massive exploration of neural
machine translation architectures.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C.,
Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, 1., and Amodei, D. (2020). Language models are few-shot
learners.

Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770-778.

Kudo, T. and Richardson, J. (2018). Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language
understanding by generative pre-training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, 1., et al. (2019). Lan-
guage models are unsupervised multitask learners. OpenAl blog, 1(8), 9.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, 1. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

12

